Best Large Language Models of 2026 - Page 12

Find and compare the best Large Language Models in 2026

Use the comparison tool below to compare the top Large Language Models on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    MAI-1-preview Reviews
    The MAI-1 Preview marks the debut of Microsoft AI's fully in-house developed foundation model, utilizing a mixture-of-experts architecture for streamlined performance. This model has undergone extensive training on around 15,000 NVIDIA H100 GPUs, equipping it to adeptly follow user instructions and produce relevant text responses for common inquiries, thus illustrating a prototype for future Copilot functionalities. Currently accessible for public testing on LMArena, MAI-1 Preview provides an initial look at the platform's direction, with plans to introduce select text-driven applications in Copilot over the next few weeks aimed at collecting user insights and enhancing its capabilities. Microsoft emphasizes its commitment to integrating its proprietary models, collaborations with partners, and advancements from the open-source sector to dynamically enhance user experiences through millions of distinct interactions every day. This innovative approach illustrates Microsoft's dedication to continuously evolving its AI offerings.
  • 2
    Claude Sonnet 4.5 Reviews
    Claude Sonnet 4.5 represents Anthropic's latest advancement in AI, crafted to thrive in extended coding environments, complex workflows, and heavy computational tasks while prioritizing safety and alignment. It sets new benchmarks with its top-tier performance on the SWE-bench Verified benchmark for software engineering and excels in the OSWorld benchmark for computer usage, demonstrating an impressive capacity to maintain concentration for over 30 hours on intricate, multi-step assignments. Enhancements in tool management, memory capabilities, and context interpretation empower the model to engage in more advanced reasoning, leading to a better grasp of various fields, including finance, law, and STEM, as well as a deeper understanding of coding intricacies. The system incorporates features for context editing and memory management, facilitating prolonged dialogues or multi-agent collaborations, while it also permits code execution and the generation of files within Claude applications. Deployed at AI Safety Level 3 (ASL-3), Sonnet 4.5 is equipped with classifiers that guard against inputs or outputs related to hazardous domains and includes defenses against prompt injection, ensuring a more secure interaction. This model signifies a significant leap forward in the intelligent automation of complex tasks, aiming to reshape how users engage with AI technologies.
  • 3
    GPT-5.1 Instant Reviews
    GPT-5.1 Instant is an advanced AI model tailored for everyday users, merging rapid response times with enhanced conversational warmth. Its adaptive reasoning capability allows it to determine the necessary computational effort for tasks, ensuring swift responses while maintaining a deep level of understanding. By focusing on improved instruction adherence, users can provide detailed guidance and anticipate reliable execution. Additionally, the model features expanded personality controls, allowing the chat tone to be adjusted to Default, Friendly, Professional, Candid, Quirky, or Efficient, alongside ongoing trials of more nuanced voice modulation. The primary aim is to create interactions that feel more organic and less mechanical, all while ensuring robust intelligence in writing, coding, analysis, and reasoning tasks. Furthermore, GPT-5.1 Instant intelligently manages user requests through the main interface, deciding whether to employ this version or the more complex “Thinking” model based on the context of the query. Ultimately, this innovative approach enhances user experience by making interactions more engaging and tailored to individual preferences.
  • 4
    GPT-5.1 Thinking Reviews
    GPT-5.1 Thinking represents an evolved reasoning model within the GPT-5.1 lineup, engineered to optimize "thinking time" allocation according to the complexity of prompts, allowing for quicker responses to straightforward inquiries while dedicating more resources to tackle challenging issues. In comparison to its earlier version, it demonstrates approximately double the speed on simpler tasks and takes twice as long for more complex ones. The model emphasizes clarity in its responses, minimizing the use of jargon and undefined terminology, which enhances the accessibility and comprehensibility of intricate analytical tasks. It adeptly modifies its reasoning depth, ensuring a more effective equilibrium between rapidity and thoroughness, especially when addressing technical subjects or multi-step inquiries. By fusing substantial reasoning power with enhanced clarity, GPT-5.1 Thinking emerges as an invaluable asset for handling complicated assignments, including in-depth analysis, programming, research, or technical discussions, while simultaneously decreasing unnecessary delays for routine requests. This improved efficiency not only benefits users seeking quick answers but also supports those engaged in more demanding cognitive tasks.
  • 5
    Gemini 3 Deep Think Reviews
    Gemini 3, the latest model from Google DeepMind, establishes a new standard for artificial intelligence by achieving cutting-edge reasoning capabilities and multimodal comprehension across various formats including text, images, and videos. It significantly outperforms its earlier version in critical AI assessments and showcases its strengths in intricate areas like scientific reasoning, advanced programming, spatial reasoning, and visual or video interpretation. The introduction of the innovative “Deep Think” mode takes performance to an even higher level, demonstrating superior reasoning abilities for exceptionally difficult tasks and surpassing the Gemini 3 Pro in evaluations such as Humanity’s Last Exam and ARC-AGI. Now accessible within Google’s ecosystem, Gemini 3 empowers users to engage in learning, developmental projects, and strategic planning with unprecedented sophistication. With context windows extending up to one million tokens and improved media-processing capabilities, along with tailored configurations for various tools, the model enhances precision, depth, and adaptability for practical applications, paving the way for more effective workflows across diverse industries. This advancement signals a transformative shift in how AI can be leveraged for real-world challenges.
  • 6
    Claude Opus 4.5 Reviews
    Anthropic’s release of Claude Opus 4.5 introduces a frontier AI model that excels at coding, complex reasoning, deep research, and long-context tasks. It sets new performance records on real-world engineering benchmarks, handling multi-system debugging, ambiguous instructions, and cross-domain problem solving with greater precision than earlier versions. Testers and early customers reported that Opus 4.5 “just gets it,” offering creative reasoning strategies that even benchmarks fail to anticipate. Beyond raw capability, the model brings stronger alignment and safety, with notable advances in prompt-injection resistance and behavior consistency in high-stakes scenarios. The Claude Developer Platform also gains richer controls including effort tuning, multi-agent orchestration, and context management improvements that significantly boost efficiency. Claude Code becomes more powerful with enhanced planning abilities, multi-session desktop support, and better execution of complex development workflows. In the Claude apps, extended memory and automatic context summarization enable longer, uninterrupted conversations. Together, these upgrades showcase Opus 4.5 as a highly capable, secure, and versatile model designed for both professional workloads and everyday use.
  • 7
    Amazon Nova 2 Lite Reviews
    The Nova 2 Lite is an efficient and rapid reasoning model specifically crafted to manage typical AI tasks related to text, images, and video. It produces coherent and context-sensitive responses while allowing users to adjust the level of internal reasoning, known as “thinking depth,” before arriving at an answer. This versatility empowers teams to opt for quicker responses or more thorough resolutions based on their specific needs. It is particularly effective in applications such as customer service chatbots, automated documentation processes, and overall business workflow enhancement. Nova 2 Lite excels in standard evaluation tests, often matching or surpassing other similar compact models in various benchmark assessments, which highlights its dependable understanding and quality of responses. Its notable capabilities encompass analyzing intricate documents, extracting precise insights from video materials, generating functional code, and providing well-grounded answers based on the information presented. Additionally, its adaptability makes it a valuable asset for diverse industries seeking to optimize their AI-driven solutions.
  • 8
    GPT-5.2 Reviews
    GPT-5.2 marks a new milestone in the evolution of the GPT-5 series, bringing heightened intelligence, richer context understanding, and smoother conversational behavior. The updated architecture introduces multiple enhanced variants that work together to produce clearer reasoning and more accurate interpretations of user needs. GPT-5.2 Instant remains the main model for everyday interactions, now upgraded with faster response times, stronger instruction adherence, and more reliable contextual continuity. For users tackling complex or layered tasks, GPT-5.2 Thinking provides deeper cognitive structure, offering step-by-step explanations, stronger logical flow, and improved endurance across long-form reasoning challenges. The platform automatically determines which model variant is optimal for any query, ensuring users always benefit from the most appropriate capabilities. These advancements reduce friction, simplify workflows, and produce answers that feel more grounded and intention-aware. In addition to intelligence upgrades, GPT-5.2 emphasizes conversational naturalness, making exchanges feel more intuitive and humanlike. Overall, this release delivers a more capable, responsive, and adaptive AI experience across all forms of interaction.
  • 9
    Grok 4.1 Thinking Reviews
    Grok 4.1 Thinking is the reasoning-enabled version of Grok designed to handle complex, high-stakes prompts with deliberate analysis. Unlike fast-response models, it visibly works through problems using structured reasoning before producing an answer. This approach improves accuracy, reduces misinterpretation, and strengthens logical consistency across longer conversations. Grok 4.1 Thinking leads public benchmarks in general capability and human preference testing. It delivers advanced performance in emotional intelligence by understanding context, tone, and interpersonal nuance. The model is especially effective for tasks that require judgment, explanation, or synthesis of multiple ideas. Its reasoning depth makes it well-suited for analytical writing, strategy discussions, and technical problem-solving. Grok 4.1 Thinking also demonstrates strong creative reasoning without sacrificing coherence. The model maintains alignment and reliability even in ambiguous scenarios. Overall, it sets a new standard for transparent and thoughtful AI reasoning.
  • 10
    BLOOM Reviews
    BLOOM is a sophisticated autoregressive language model designed to extend text based on given prompts, leveraging extensive text data and significant computational power. This capability allows it to generate coherent and contextually relevant content in 46 different languages, along with 13 programming languages, often making it difficult to differentiate its output from that of a human author. Furthermore, BLOOM's versatility enables it to tackle various text-related challenges, even those it has not been specifically trained on, by interpreting them as tasks of text generation. Its adaptability makes it a valuable tool for a range of applications across multiple domains.
  • 11
    NVIDIA NeMo Megatron Reviews
    NVIDIA NeMo Megatron serves as a comprehensive framework designed for the training and deployment of large language models (LLMs) that can range from billions to trillions of parameters. As a integral component of the NVIDIA AI platform, it provides a streamlined, efficient, and cost-effective solution in a containerized format for constructing and deploying LLMs. Tailored for enterprise application development, the framework leverages cutting-edge technologies stemming from NVIDIA research and offers a complete workflow that automates distributed data processing, facilitates the training of large-scale custom models like GPT-3, T5, and multilingual T5 (mT5), and supports model deployment for large-scale inference. The process of utilizing LLMs becomes straightforward with the availability of validated recipes and predefined configurations that streamline both training and inference. Additionally, the hyperparameter optimization tool simplifies the customization of models by automatically exploring the optimal hyperparameter configurations, enhancing performance for training and inference across various distributed GPU cluster setups. This approach not only saves time but also ensures that users can achieve superior results with minimal effort.
  • 12
    ALBERT Reviews
    ALBERT is a self-supervised Transformer architecture that undergoes pretraining on a vast dataset of English text, eliminating the need for manual annotations by employing an automated method to create inputs and corresponding labels from unprocessed text. This model is designed with two primary training objectives in mind. The first objective, known as Masked Language Modeling (MLM), involves randomly obscuring 15% of the words in a given sentence and challenging the model to accurately predict those masked words. This approach sets it apart from recurrent neural networks (RNNs) and autoregressive models such as GPT, as it enables ALBERT to capture bidirectional representations of sentences. The second training objective is Sentence Ordering Prediction (SOP), which focuses on the task of determining the correct sequence of two adjacent text segments during the pretraining phase. By incorporating these dual objectives, ALBERT enhances its understanding of language structure and contextual relationships. This innovative design contributes to its effectiveness in various natural language processing tasks.
  • 13
    ERNIE 3.0 Titan Reviews
    Pre-trained language models have made significant strides, achieving top-tier performance across multiple Natural Language Processing (NLP) applications. The impressive capabilities of GPT-3 highlight how increasing the scale of these models can unlock their vast potential. Recently, a comprehensive framework known as ERNIE 3.0 was introduced to pre-train large-scale models enriched with knowledge, culminating in a model boasting 10 billion parameters. This iteration of ERNIE 3.0 has surpassed the performance of existing leading models in a variety of NLP tasks. To further assess the effects of scaling, we have developed an even larger model called ERNIE 3.0 Titan, which consists of up to 260 billion parameters and is built on the PaddlePaddle platform. Additionally, we have implemented a self-supervised adversarial loss alongside a controllable language modeling loss, enabling ERNIE 3.0 Titan to produce texts that are both reliable and modifiable, thus pushing the boundaries of what these models can achieve. This approach not only enhances the model's capabilities but also opens new avenues for research in text generation and control.
  • 14
    EXAONE Reviews
    EXAONE is an advanced language model created by LG AI Research, designed to cultivate "Expert AI" across various fields. To enhance EXAONE's capabilities, the Expert AI Alliance was established, bringing together prominent companies from diverse sectors to collaborate. These partner organizations will act as mentors, sharing their expertise, skills, and data to support EXAONE in becoming proficient in specific domains. Much like a college student who has finished general courses, EXAONE requires further focused training to achieve true expertise. LG AI Research has already showcased EXAONE's potential through practical implementations, including Tilda, an AI human artist that made its debut at New York Fashion Week, and AI tools that summarize customer service interactions as well as extract insights from intricate academic papers. This initiative not only highlights the innovative applications of AI but also emphasizes the importance of collaborative efforts in advancing technology.
  • 15
    Jurassic-1 Reviews
    Jurassic-1 offers two model sizes, with the Jumbo variant being the largest at 178 billion parameters, representing the pinnacle of complexity in language models released for developers. Currently, AI21 Studio is in an open beta phase, inviting users to register and begin exploring Jurassic-1 through an accessible API and an interactive web platform. At AI21 Labs, our goal is to revolutionize how people engage with reading and writing by integrating machines as cognitive collaborators, a vision that requires collective effort to realize. Our exploration of language models dates back to what we refer to as our Mesozoic Era (2017 😉). Building upon this foundational research, Jurassic-1 marks the inaugural series of models we are now offering for broad public application. As we move forward, we are excited to see how users will leverage these advancements in their own creative processes.
  • 16
    Alpaca Reviews

    Alpaca

    Stanford Center for Research on Foundation Models (CRFM)

    Instruction-following models like GPT-3.5 (text-DaVinci-003), ChatGPT, Claude, and Bing Chat have seen significant advancements in their capabilities, leading to a rise in their usage among individuals in both personal and professional contexts. Despite their growing popularity and integration into daily tasks, these models are not without their shortcomings, as they can sometimes disseminate inaccurate information, reinforce harmful stereotypes, and use inappropriate language. To effectively tackle these critical issues, it is essential for researchers and scholars to become actively involved in exploring these models further. However, conducting research on instruction-following models within academic settings has posed challenges due to the unavailability of models with comparable functionality to proprietary options like OpenAI’s text-DaVinci-003. In response to this gap, we are presenting our insights on an instruction-following language model named Alpaca, which has been fine-tuned from Meta’s LLaMA 7B model, aiming to contribute to the discourse and development in this field. This initiative represents a step towards enhancing the understanding and capabilities of instruction-following models in a more accessible manner for researchers.
  • 17
    GradientJ Reviews
    GradientJ offers a comprehensive suite of tools designed to facilitate the rapid development of large language model applications, ensuring their long-term management. You can explore and optimize your prompts by saving different versions and evaluating them against established benchmarks. Additionally, you can streamline the orchestration of intricate applications by linking prompts and knowledge sources into sophisticated APIs. Moreover, boosting the precision of your models is achievable through the incorporation of your unique data assets, thus enhancing overall performance. This platform empowers developers to innovate and refine their models continuously.
  • 18
    PanGu Chat Reviews
    Huawei has created an AI chatbot known as PanGu Chat, which is capable of engaging in human-like conversations and providing answers to inquiries in a manner similar to ChatGPT. This technology aims to enhance user interaction by simulating natural dialogue.
  • 19
    LTM-1 Reviews
    Magic’s LTM-1 technology facilitates context windows that are 50 times larger than those typically used in transformer models. As a result, Magic has developed a Large Language Model (LLM) that can effectively process vast amounts of contextual information when providing suggestions. This advancement allows our coding assistant to access and analyze your complete code repository. With the ability to reference extensive factual details and their own prior actions, larger context windows can significantly enhance the reliability and coherence of AI outputs. We are excited about the potential of this research to further improve user experience in coding assistance applications.
  • 20
    Reka Reviews
    Our advanced multimodal assistant is meticulously crafted with a focus on privacy, security, and operational efficiency. Yasa is trained to interpret various forms of content, including text, images, videos, and tabular data, with plans to expand to additional modalities in the future. It can assist you in brainstorming for creative projects, answering fundamental questions, or extracting valuable insights from your internal datasets. With just a few straightforward commands, you can generate, train, compress, or deploy it on your own servers. Our proprietary algorithms enable you to customize the model according to your specific data and requirements. We utilize innovative techniques that encompass retrieval, fine-tuning, self-supervised instruction tuning, and reinforcement learning to optimize our model based on your unique datasets, ensuring that it meets your operational needs effectively. In doing so, we aim to enhance user experience and deliver tailored solutions that drive productivity and innovation.
  • 21
    Samsung Gauss Reviews
    Samsung Gauss is an innovative AI model crafted by Samsung Electronics, designed to serve as a large language model that has been trained on an extensive array of text and code. This advanced model is capable of producing coherent text, translating various languages, creating diverse forms of artistic content, and providing informative answers to a wide range of inquiries. Although Samsung Gauss is still being refined, it has already demonstrated proficiency in a variety of tasks, such as: Following directives and fulfilling requests with careful consideration. Offering thorough and insightful responses to questions, regardless of their complexity or peculiarity. Crafting different types of creative outputs, which include poems, programming code, scripts, musical compositions, emails, and letters. To illustrate its capabilities, Samsung Gauss can translate text among numerous languages, including English, French, German, Spanish, Chinese, Japanese, and Korean, while also generating functional code tailored to specific programming needs. Ultimately, as development continues, the potential applications of Samsung Gauss are bound to expand even further.
  • 22
    Flip AI Reviews
    Our advanced model is capable of comprehending and analyzing all forms of observability data, including unstructured information, enabling you to swiftly restore the health of software and systems. It has been designed to handle and address numerous critical incidents across diverse architectural frameworks, providing enterprise developers with access to unparalleled debugging expertise. This model specifically targets one of the most challenging aspects of software engineering: debugging issues that arise in production. It functions effectively without any prior training and is compatible with any observability data platform. Additionally, it can adapt based on user feedback and refine its approach by learning from previous incidents and patterns specific to your environment while ensuring that your data remains secure. Consequently, this allows you to tackle critical incidents with Flip in a matter of seconds, optimizing your response time and increasing operational efficiency. With such capabilities, you can significantly enhance the reliability of your systems.
  • 23
    Sarvam AI Reviews
    We are creating advanced large language models tailored to India's rich linguistic diversity while also facilitating innovative GenAI applications through custom enterprise solutions. Our focus is on building a robust platform that empowers businesses to create and assess their own GenAI applications seamlessly. Believing in the transformative potential of open-source, we are dedicated to contributing to community-driven models and datasets, and we will take a leading role in curating large-scale data aimed at the public good. Our team consists of dynamic AI innovators who combine their expertise in research, engineering, product design, and business operations to drive progress. United by a common dedication to scientific excellence and making a positive societal impact, we cultivate a workplace where addressing intricate technological challenges is embraced as a true passion. In this collaborative environment, we strive to push the boundaries of AI and its applications for the betterment of society.
  • 24
    VideoPoet Reviews
    VideoPoet is an innovative modeling technique that transforms any autoregressive language model or large language model (LLM) into an effective video generator. It comprises several straightforward components. An autoregressive language model is trained across multiple modalities—video, image, audio, and text—to predict the subsequent video or audio token in a sequence. The training framework for the LLM incorporates a range of multimodal generative learning objectives, such as text-to-video, text-to-image, image-to-video, video frame continuation, inpainting and outpainting of videos, video stylization, and video-to-audio conversion. Additionally, these tasks can be combined to enhance zero-shot capabilities. This straightforward approach demonstrates that language models are capable of generating and editing videos with impressive temporal coherence, showcasing the potential for advanced multimedia applications. As a result, VideoPoet opens up exciting possibilities for creative expression and automated content creation.
  • 25
    Aya Reviews
    Aya represents a cutting-edge, open-source generative language model that boasts support for 101 languages, significantly surpassing the language capabilities of current open-source counterparts. By facilitating access to advanced language processing for a diverse array of languages and cultures that are often overlooked, Aya empowers researchers to explore the full potential of generative language models. In addition to the Aya model, we are releasing the largest dataset for multilingual instruction fine-tuning ever created, which includes 513 million entries across 114 languages. This extensive dataset features unique annotations provided by native and fluent speakers worldwide, thereby enhancing the ability of AI to cater to a wide range of global communities that have historically had limited access to such technology. Furthermore, the initiative aims to bridge the gap in AI accessibility, ensuring that even the most underserved languages receive the attention they deserve in the digital landscape.